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J. Phys. A: Math. Gen. 14 (1981) 1407-141s. Printed in Great Britain 

One-dimensional models with l /r2  interactions 

John L Cardy 
Department of Physics, LJniversity of California, Santa Rarbara, California 931 06, USA 

Received 7 October 1980 

Abstract. The critical behaviour of a general discrete one-dimensional model with inverse 
square interactions is discussed, using rcnormalisation group methods. 

1. Introduction 

The one-dimensional Ising model with long-range ferromagnetic interactions which 
decay asymptotically as 1 / r z  is of considerable theoretical interest. lsing models with 
l / r l rU interactions are known rigorously to exhibit long-range order if a < 1, and have 
no transition if a >  I (Ruelle 1969, Dyson 1969). Thus the l / r 2  model stands on a 
dividing line. No rigorous information is known about the existence of long-iange 
order in this case, but Thouless (1969) has argued that it has a finite 7=, for much the 
same reasons as has the two-dimensional XY model (Kosterlitz and Thouless 1973). 
Both models exhibit non-trivial topological defects which interact logarithmically. The 
energy of a single topological defect also diverges logarithrnically with the size of the 
system, and at low temperatures the appearance of such defects is disfavoured. In the 
one-dimensional Ising model, these defects are just the domain walls. At  higher 
temperatures the entropy term in the free energy dominates, and the domain walls 
appear, thus destroying the long-rqnge order. 

The 1 / r 2  Ising model is also of interest because it can be mapped into a path integral 
formulation of the spin-; Kondo problem (Anderson and Yuval 1970) in which the one 
dimension POW represents imaginary time, and the king spins represent the time history 
of the single impurity spin. 

Anderson et a1 (1970), and Anderson and Yuval(1971), applied a primitive version 
of the renornialisation group to the l / r 2  Ising model, and obtained the expected phase 
structure, with its implications for the Kondo problem. 

In this paper we consider a general discrete one-dimensional model with l / r 2  
interactions. By discrete, we mean that there are a finite number of states available at 
each site. It is clear that the general considerations of Thouless (1969) hold also for 
these models. On the other hand, for models with a continuum of states we expect that 
T,-* 0 as U -+ 1 from below (Kosterlitz 1976). 

These general discrete models are of interest in view of their relationship to higher 
spin generalisations of the Kondo problem. It turns out that they also have features 
which bear a striking resemblance to higlier-dimensional problems, such as two- 
dimensional melting, and quark confinement. 

The layout of this paper is as follows. In 8 2 we define the set of models under 
consideration, and show that their Hamiltonians may be exact!y rewritten in terms of 
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degrees of freedom describing the kinks and their logarithmic interactions. In 5 3 it is 
shown that a suitable generalisation of the Anderson et a1 renormalisation scheme can 
be carried out, and that, remarkably, no new couplings are generated. The 
consequences fc;r the critical behaviour are discussed in S: 4, and a set of graphical rules 
is given by which one can determine the phase diagram of a given model. Two examples 
are discussed in detail: the Q-state Potts model and the Ashkin-Teller model. The 
Appendix is devoted to generalising the renormalisation group equations to the case of 
a general force law between the kinks, thus justifying some simplifications made in the 
text. 

2. Formulation 

We consider a one-dimensional chain, whose sites are labelled by integers n. At each 
site n is a variable a, which can be in one of S states a ,  p, . . . . The Hamiltonian is 
defined by 

-pH = V ( n  - m)K(a,,, a,) 
m<n 

where V ( n )  - l / n z  as n + 03, and the interaction is ferromagnetic, i.e. 

K ( a ,  p )  = K(p ,  a )  < K ( a ,  a ) .  (2.2) 

Further restrictions on V ( n )  will emerge in the course of our analysis. In principle, it is 
neceswry that the interaction between sites m and n have the factorising form (2.1) only 
asymptotically as ( n  - m )  + CO. 

We now wish to rewrite (2.1) in terms of degrees of freedom describing the domain 
walls, or kinks. A kink of type (a$?), with a # p, is said to occupy the site n if an = a and 
a,+ = p. Defining a new function U ( n )  such that 

(2.3) V ( n )  = U ( n  L.1) - 2 U ( n ) +  U ( n  - 1) 

the iiamiltonian, after a rearrangement of terms, can be written 

-PH = 1 U ( n  -m){K(am+1j an)+K(r,n,  gn+l)-K(am, ~ , i ) - K ( c + m + l , ~ n + l ) )  
m < n 

+E u ( O ) [ K ( ~ ~ ,  an+1)-K(an, ~ n ) l + C  (u(0)- u(l))K(ITn> u n ) *  (2.4) 
n n 

Now observe that the expression in the curly brackets vanishes whenever IT,  = a,+1 or 
IT,,, = am+1. Thus this term is non-zero only when there are kinks at sites m and n, and 
therefore it describes the interaction between the two kinks. The second term in (2 4) 
gives a chemical potential fw the kinks. From (2.3) one can show that 

a quantity which we assume to be positive. The third term then shows that neighbourii\g 
kinks of types (ap)  and ( B y )  attract each other with a linear potential proportional '.o 
-K(p,  p) .  We can use the arbitrariness in the choice of energy scale to impose the 
condition 

max K ( a ,  a )  = 0. 
a 
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States with a negative value of K ( a ,  a )  will then be energetically disfavoured. In fact, 
since the important interactions which determine T, are logarithmic rather than linear, 
we expect such states to be irrelevant even at finite temperatures. This can be made 
quantitative using the renormalisation group ideas developed in the Appendix, where 
we consider a general force law between kinks. The effect is that, in considering the 
critical behaviour, we can ignore all states a with K ( a ,  a )  < 0. For example, in the 
spin-1 Ising model where vfl = 0, *l and a simple interaction K ( a ,  d)aaa'- 1, the 
state (T = 0 will be irrelevant, and the critical behaviour will be that of the spin-; Ising 
model. 

The explicit solution of (2.3) is 

f l -1  m 

~ ( n ) =  1 (n--r)V(r)-n 1 V ( r ) + C  
r - 1  r = l  

(2.7) 

where we have imposed the boundary condition that V ( n )  should contain no linear 
term as n + W .  C is chosen so that U contains no constant term either, that is 

U ( n )  = -In n + O ( l / n )  as n + W .  (2.8) 

If V(r) = l / r 2  for all r 2 2 ,  U ( 0 )  = C = 1 + y +  V(1), where y -0.577 is Euler's 
constant. 

3. Renormalisation 

We now replace the original system, of kinks which occupy sites of a discrete lattice, by a 
continuous one where kinks are free to move on the line, but have a hard repulsive core 
of size a. Such a modification of the ultraviolet cut-off should not change the critical 
behaviour. We shall also approximate U(r /u)  by its asymptotic form -ln(r/a) for all 
r > a. As shown in the Appendix, this approximation is justified, since the fixed point 
form of the interaction must be scale invariant. Instead of using the chemical potential 
we introduce the fugacity y o @  = yBa for the kink (crp), which initially has the value 

The partition function now takes the form 

where the kink at position ri is of type (a ip i )  and we impose the constraint that the kinks 
are correctly ordered, i.e. pi = ai+l. Periodic boundary conditions also imply that 
P n  =al .  

We now replace a by ue' (with 1 K 1) and see how the various parameters yn4 and 
K ( a ,  P )  must transform in order to maintain the form of 2. The fundamental length a 
appears raised to a power in (3.2), and also in the theta functions controlling the short 
distance cut-off. If we neglect terms 0(12) the effects of these two dependences are 
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additive. In each term of (3.2), a appears raised to the power 

1 [K(ai, aj)+K(Pi ,  Pj)-K(ai, Pj)-K(Pi, aj)I (3.3) 

(3.4) 

(3.5) 

i < j  

=--~1-$c [ K ~ c z ~ ,  ( ~ j ) + ~ ( a i + 1 ,  a j + l ) - - ~ ( a z ,  a j+l)-K(ai+l ,  aj)I 

= -n -E K(Ui, pi). 

i # j  

1 

The change a + ae '  can therefore be compensated b y  making y a p  + 
y a p  exp(1 + K ( a ,  P ) ) L  The fact that such a simple renormalisation is possible, while 
trivial for the Ising model, is quite remarkable in this general case. 

Turning to the effect of changing a in the cut-off, once again the neglect of 0(12) 
ierms enables us to consider each &function separately. Writing 

(3.6j O(rjT1-rj-ae / ) =  e ( r j , ~ - r j - a ) - a ~ ~ ( r j + l - r j - a ) + ~ i ~ 2 )  

we see that the additional effect is to juxtapose each neighbouring kink pair in  turn. The 
factors involving two such kinks i, i -+ 1 a,id a third kink j are 

K ( a , . a i j + r c ( P , . P , ) - K ( ~ ~ . p , j - K ( p ~ , ~ ~ )  
~ ~ a , ~ i ~ ~ a , ~ t ~ ~ +  ,C(rj - r i ) /a l  

(3.7) K I a Z  , l , u , ~ + K I P , + , . ~ , ~ - K ~ ~ ~ + , , ~ , ~ - ~ ~ ~ ~ ~ ~ , a i l  x [ ( T j  - r i  - a ) / a ]  

For rj - r ,  >> a the second bracket may be approximated by (r j  .- r i / a ) .  This neglects 
terms which correspond to l / r  interactions between the kinks, which are irrelevant in 
the renormalisation group sense. Recalling that Pi  = cyjs l ,  (3.7) reduces to 

(3.8) K l a , . a i ) + K ( p , + , . p , ) - ~ ( u , , p , ) - K ( P ,  + , ,ai) 
~ Y , Y , P , Y P , P ; + ~ [ ~ ~ ~  - r i ) ia l  

As long as ai # pi+l, this can be incorporated into a renormalisation of Y ~ , ~ , , ~ .  In 
general, this will take the form 

Y a p  + YaF + 1 c YavYvP. (3.9) 
Y 

However, i€ a, = the pair is neutral, and (3.8) is independent of (r; - r ; ) .  'This 
leading term then contributes only a constant to the free energy, and one must proceed 
to the next term in the expansion of (3.7), which is 

(3.10) ly2,,p, [K (a, ,  a,) + K ( P i ,  P I )  - K (ai, Pj )  - K(P; ,  aj)Ia/(rj - ri 1. 
Integrating over the allowed range rL.-l i ri Ti,.?, we obtain 

l y 2 , ? p , [ ~  (ai, a / )  + K ( P ~ ,  P I )  - K  (ai, P i )  - K ( P ~  aj)I{ln[(r; - r z - ~ ) / ~ I - l ~ 1 [ ( r j  -ri+z)/aII. 
(3.13) 

These two terms may be interpreted as a renormalisation of the interaction of a kink at r j  
with :hose at r i - l> ri.b2 respectively, if we recall that p,-i = a ,  = a i t 2 .  After coirectly 
symmetrising by including the effects of neutral. pairs to the left of rl..l and the right of 
ri+2, terms like (3.11) can he expressed as a renormalisation of the couplings K ( a ,  p ) :  

K ( a , P ) + K ( a , P ) - - l  x 4 ' :Y(wa,P)+X' (a ,  y ) - K ( P ,  'i)) 
Y 

- 1  c Y ; y ( w a ,  P)+K(P ,  1/)-K(a, Y)). (3.12) 
Y 

Note that this preserves the condition K ( a ,  a )  =; 0. 
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Combining all three contributions we obtain the renormalisation group equations 
(Kap = -K(a ,  p )  > 0 ) :  

dKap/dl = -E YL(K,~ + K , ~ - K ~ ~ ) - X  , I ; ~ ( K ~ ~ + K ~ ~ - K , ~ )  (3.13) 
Y Y 

(3.14j 

These equations are the central result of this paper. The only approximations that 
have been made are the neglect of l / r  interactions between the kinks, which are 
irrelevant by dimensional counting, and the neglect of excluded volume effects. These 
non-universal terms also appear in the X Y  model (Cardy and Parga 1980). They are 
difficult to evaluate, but fortunately appear only in O(y4). If U(0)  is large enough 
(which can be guaranteed by, for example, making V(1) large) the initial value of yap is 
small even at T,, and the equations should be valid. 

4. Solution 

Equations (3.13,3.14) exhibit an S ( S  - 1)/2-dimensional space of fixed points yap = 0. 
At  low temperatures all the Kmp will be large and this fixed subspace will be attractive. 
The first phase transition will be characterised by some of the yap becoming marginal, 
when one or more of the Kap becomes equal to unity. If there is no underlying symmetry 
in the model, in general there will be a unique largest Kap, with (cup) = (E/?), say. At the 
critical point, ail the yap # y d p  will remain irrelevant. In this case the equations reduce 
to those describing the Ising model, and one obtains the usual results, with for example 
the correlation length 6 diverging as T .+ T, + according to 

5 - 60 exptb ( T  - T J P ]  (4.1) 

with p = $, and to, b non-universal numbers. 
When several of the Kap become critical at the same time, the transition can be 

characterised graphically as follows. Draw a graph whose vertices are labelled by the 
states a, p, . . . . A particular transition corresponds to drawing a set of edges (cup) 
corresponding to those Kap which become critical. The universality class of the 
transition then depends only on the topology of the graph. Note that if Kap and Kay 
become critical, then the second term in (3.14) will cause ye., to become relevant above 
the transition temperature, even though Kay is not critical. Physically, this is because, 
above T,, the (cup) and (By) kinks form a plasma in which screening occurs. Not only do 
these kinks screen the logarithmic interaction between kinks of their own kind, but also 
between the ( a y )  kinks, which may be viewed as bound pairs of the (ap) and (py)  kinks. 
Thus, above T,, all the kinks associated with states at which edges of a connected graph 
terminale form a plasma, and no longer have logarithmic interactions amongst them- 
selves. They still, however, interact logarithmically with kinks in a disconnected piece 
of the graph. To investigate the possibility of further transitions, one should then shrink 
the connrcted pieces of the graph down to single vertices, and then repeat the 
procedure. If all states are connected no further transitions arc possible, and the 
high-temperature phase has been reached. 

In this way it is possible to classify all possible transitions which can occur in a given 
model. We now illustrate with two simple examples. 
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4.1. Q-state Potts model 

This model has the maximum amount of symmetry, and undergoes' only one phase 
transition. The couplings are given by 

Kap zK(1-6,p). (4.2) 

In this case yap = y(cx # p )  and the renormalisation group equations become 

dK/dl=  -2QKy2 

dy/d l=  (1 - K)y + (Q - 2 ) ~ ' .  

(4.3) 

(4.4) 

For Q Z 2  we note the appearance of a y 2  term in the second equation, which is 
forbidden in the Ising case because of the y + - y  symmetry of the partition function. Its 
appearance in general is a consequence of the fact that three kinks can bind to form a 
neutral object. A similar situation, and similar equations, arise in the problem of the 
melting of a triangular lattice (Nelson 1978). The reader is referred to this article for a 
diagram of the renormalisation flows. There are two separatrices y = m'*'x, where 
x = 1-K and 

m(*' = {(Q-2)*[(Q-2)2+8Q]1'2}/4U. (4.5) 

( y  +mlx)"(y - m2x)m* = t" 

Putting m(-' = -ml and m(+' = m2, the renormalisation group trajectories are 

(4.6) 
where we have imposed the initial condition that y = -mlx +O( t )  for x = 0(-1). The 
parameter t is thus proportional to T - T,. To evaluate the correlation length 6, we 
integrate the equations out to x = 0(+1) ,  where the correlation length is finite, to obtain 

dx dx 1 

(4.7) 

The asymptotic behaviour as t +  0 may be evaluated by a simple rescaling y + 
which makes the constraint (4.6) independent of t. In this 

way 

(4.8) 

We conclude that the correlation length diverges much as in the Ising model, but with an 
index 

ytm,/(m,+m,i + X,m,/(ml+m2) 

In 6 - t -~~l/(ml"2'[l + 0 ( t m 1 / ( T + m 2 9 ] .  

p = 4{1- ( Q  - 2)/[(Q - 2)2+ 8Q]1/2}.  (4.9) 

4.2. Ashkin-Teller model 

This model has four states related by a 2, symmetry. If we label them 1, 2, 3, 4, the 
couplings are K1 = K12 = K23 = K34 = k'41 and K2 = KI3 = K24. The RG equations 
reduce to 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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When K1 = KZ these reduce to the equations for the four-state Potts model. When 
Kz = 2K1 and y 2  = y :  the model decouples into two Ising models, and the equations 
behave appropriately. We must distinguish two cases K1 5 K2. For K1 > Kz  the first 
transition occurs when Kz = 1. At this point y z  becomes relevant, but not y l .  That is, 
kinks of the type (13) and (24) unbind, but they cannot screen the interaction between 
the other kinks, in the same way that integer electric charges cannot screen half-integer 
charges. The half-integer charges are then able to undergo a second transition when 
K1 = 1. Graphically this sequence is represented in figure 1. When K1 < Kz the first 
transition occurs at K ,  = 1, where both y 1  and y z  become relevant. The half-integer 
charges are capable of screening the integer charges, so no further phase transition 
occurs. This is represented in figure 2. The full phase diagram is shown schematically in 
figure 3. Our results are consistent with the limits K1 = CO and KZ = 0, when the model 
reduces to a single Ising model. Note that all the transitions are Ising-like (except at the 
Potts point), unlike the case of two dimensions and short-ranged interactions. 

1 

4 .  O 2  -/- : t .  i 
Tc 1 T, 2 

: 
Figure 1. Graphs illustrating the sequence of transitions in the Ashkin-Teller model when 
K1> Kz. 

. 
I ,  

Figure 2. The same as figure 1, with K1< K2. 

Figure 3. Schematic phase diagram of the Ashkin-Teller model. Across the boundary I1P 
kinks (13) and (14) unbind. Across IzPA kinks (12), (23), (34) and (41) unbind. P 
represents the four-state Potts model critical point. 
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5. Conclusions 

We have shown that the general discrete one-dimensional model with l / r 2  interactions 
can be solved using a generalisation of the renormalisation scheme of Anderson et a /  
(1970). Since in the S-state model there are S(S-1) kinds of kink, and O(S4) 
interactions, it is remarkable that the renormalisation can be carried through without 
extending the parameter space beyond that of the original model, even though no 
symmetry is assumed. 

In general these models show multiple phase transitions of the same general type as 
in the Ising model. That is, the correlation length 5 diverges like exp[b/( T, - T ) P ]  with p 
however differing from its Ising value of t ,  the specific heat shows an essential 
singularity like and the order parameter jumps discontinuously to zero. We have 
illustrated a general graphical scheme whereby the phase diagram of a particular model 
may be found. Apart from their relevance to generalisations of the Kondo problem, 
these models provide simple examples of the physics of topological phase transitions, 
charge confinement and screening. 
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Appendix 

Suppose that the interaction energy of the kinks is not simply proportional to ln(r/a), 
but is a general function U(r /a ) .  For simplicity we consider only the Ising case, so that 
the partition function is 

m 

Z = y 2 “  (drl . . . dr2,,/n2”) n (0,+1 - 0, -a) fI exp[(-l)’~-’U(r, -rJa)]. (AI)  
,I =o i i < j  

In this expression there is an ambiguity in the definition of y, since we have not defined 
the zero of energy. So we impose the condition that U(1) = 0. The renormalisation 
may be carried through as before. On replacing a --f a e  , 

u(r /ue‘ )  = U(r /a ) -  I ( r /a)U’(r /n)+o(12) .  (A21 

1 

Hence U ( x )  should be renormalised according to 

U ( x ) +  U ( x ) +  I x U ’ ( x ) .  

However, this does not preserve the constraint U(1) = 0. This  we subtract a term 
IU’il) from the right-hand side of (A3),  and compensate by renormalising y .  The 
screening term coming from juxtaposing kinks is straightforward to evaluate. The 
resulting equations describe flows in the space of functions U(x,  I ) :  

dU/dl =xU’( .W)-  U’( l ) -4U(x)y2  (A4) 

dy/d l=  (1 - U ’ ( l ) ) y  (A51 
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where U’(x)  = dU/ax. The fixed points occur at y = 0, V ( x )  = K In x. If we ignore the 
terms involving y ,  the solution is 

(A61 U(x,  I )  = U(xe’, 0) - U(e‘, 0) 

which shows that the fixed point can only be reached if the initial interaction U(x,  0) is 
asymptotjcnlly logarithmic. Otherwise, the kinks will be either permanently bound or 
permanently free. Similar considerations may be applied to the two-dimensional X Y  
model (Kosterlitz 1974). In this case the screening term is more complicated and 
involves a convolution of U with itself. 
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